首页 问答 正文

2019年高考数学考试题(2019年天津高考理科数学试卷答案解析及点评)

数学试题点评

天津高考数学试卷点评:难度区分合理

纵观天津高考数学试卷,笔者总体感觉在引入新鲜元素的同时也保留了天津本地稳定为主的特征,试题简洁明快,特色鲜明,平凡问题考验真功夫,在考查基础知识的同时注重对思想方法与能力的考查,试卷从试题的综合性、应用性和创新性的角度设计了由易到难的整体布局,试题的难易分布梯度较为平缓,试题情景设置合理,紧扣教材选题的同时也有着相当的创新要素,对于考生能力的要求进一步提高。与2013年相比,今年试卷总体难度稍有上升。

今年高考试卷结构上很好地秉承了天津高考以稳为主的命题思路,题型分布和考点设置上没有太大变化,严格依照《考试说明》中规定的考查内容,准确把握考查要求,对基础知识的考查既注重全面又突出重点。

试卷每种题型均设置了数量较多的基础题,许多试题都是考查单一的知识点或是在最基础的知识交汇点上设置,例如试卷中的选择题第1、2、3、4题,填空题第9、10、11、12题,这部分试题就是通常意义上的送分题,考查考生的基本功,需要牢牢把握。

试卷还注意确保支撑数学知识体系的主干内容(如三角函数与平面向量、概率统计、立体几何、解析几何、数列和函数与导数)占有较高的比例。

下表是近四年天津高考对各主干模块的考查分值统计:

通过上表可以看出,我们会发现三角函数等几大板块部分作为高中学习的绝对重点,几年来总体权重变化也不是特别明显。这也说明考生备考要依纲靠本,把精力更多地投放在考纲中的重点基础知识进行针对性复习。

今年高考试卷依然突出了考教一致这一原则。试卷中选题很多是源于教材,有些试题可看出与教材中的例题、练习和习题融合、改造的痕迹。这种做法有利于中学教学回归教材,

真正实现教什么考什么,同时也要求今后的同学在学习或是备考时注意到教材的重要作用,针对教材知识进行思考综合。

一、中等题目减少,强调通性通法

2014天津高考还有一个显著的特征是试卷中等题比重在下降,在保证良好区分度与选拔功能的前提下逐步回归基础。在试题命题上注重解题思路起点低,入口宽,更加强调“通性通法”在解题中的运用,要求运用基本概念分析问题,运用基本公式运算求解,利用基本定理推理论证,这些要求在各题中都有所体现,但各有不同侧重。同时,还要求考生利用基本数学思想方法寻找解题思路,如试卷第7题需就题目中的绝对值来进行分类讨论分析,而第14题则需用到转化化归思想将函数零点问题转化为函数图象交点问题来考虑。试卷强调通性通法,有利于引导中学数学教学回归基础。

二、注重能力立意,更加注重创新

天津数学试题体现了《考试说明》规定的各项能力要求,运算求解能力贯穿试卷始终,空间想象能力考查也达到一定深度,推理论证能力和抽象概括能力依然是考查的重点,在区分考生时起到重要作用。试卷中依然注重应用意识与创新意识的考查,如第16题,以实际问题为背景,考查概率知识在实际问题中的简单应用;第7、14、20题构思与设问较为新颖,考查了学生的创新意识。

除以上几点外,今年天津卷最大的亮点在于引入了创新题型。此类题型在北京等其他省市经过多年尝试与摸索已经初步成型,并已逐渐形成一种命题趋势。这类题型的特征在于题干比较抽象,需要考生具有较强的理解力,同时在准确理解题意的基础上综合使用相应的知识进行解题。如第19题,在数列问题中引入了集合环境,以全新的角度设置问题,重在考查考生对设问的理解。第1问枚举帮助考生理解题意,而第2问的新意在于要求考生构造二者差值,这是对其不等关系进行实质性分析的基础,而对于该差值的极端化处理则是放缩法证明不等式的基本技巧。此题要求考生具备较强的信息转译能力和严密论证能力,是很好的创新试题。在天津以往的高考中压轴题基本上还是以常规题型为主,很少涉及这类创新题。

由以上变化我们不难看出,今后的天津高考将会坚持并进一步提高对应用意识和创新意识的考查力度,这也要求本地考生在学习备考过程中要把眼界放开,在立足教材以及基础题型的同时要兼顾创新意识的培养。创新题型作为全国各地高考的一个趋势,今后也有望在天津高考中占据一席之地,也希望本地考生提前做好准备。

三、难度区分合理,有利于高考选拔

天津高考数学试题分布由易到难、循序渐进,选择填空题重点考查基础知识和基本运算,解答前四题重点考查综合运用基础知识及基本方法的能力,后两道重点考查学生的思维能力与探究能力。试卷整体难度分布比较平缓,计算量适中,各类试题也是由易到难,具有较好的梯度,从而实现高考择优录筛选考生的根本目的。

试卷中通过合理设置选择填空题的难度,达到了考查考生能力的目的;而通过解答题设问由浅入深的设置,也加强了对不同层次考生的区分功能,如第18、20题,都是上手相对容易,但深入又有一定难度。如第20题,题干简洁,设问大气,学生审题不会有什么困难,第1问要求考生清楚函数单调性与零点存在性之间的关系,并由此建立不等式确定参数取值范围;但后两问要探究两根之比与两根之和的变化规律,就需要考生考虑到由前问结论中参数的取值范围,将其与函数值域进行联系,从而根据零点处参数的等量关系进行函数构造。整体上第2问借助了第1问的结论,第3问又借助了第2问的结论,命题上环环相扣,逻辑清晰,要求考生具有较强的抽象概括、推理论证以及分析问题解决问题的能力,同时考查学生的直观意识,具有很好的区分度与选拔性。

以上是笔者对于今年高考数学试卷的一些分析,可以看出试卷本身十分成功,可见命题人出题时考虑问题之周全。对于考生来说,只要考前复习充分,考试心态平和,相信都能取得良好的结果。同时试卷中体现出的诸多特点与变化,也值得今后的考生多加注意和思考。

最后,笔者衷心祝愿广大学子能取得优异的成绩,考入理想的大学。同时希望决战2016高考的新高三同学能倍加努力,稳扎稳打,在高考中也取得优异的成绩

2019年湖南高考数学试卷试题及答案解析(答案WORD版)

高考完成了数学科目的考试,考试结束教育部考试中心的数学命题专家就对今年的数学试题进行了分析。

 总的说来,在贯彻落实《国务院关于深化考试招生制度改革的实施意见》的开局之年,高考数学重在增强基础性、综合性,着重考查学生独立思考和运用所学知识分析问题、解决问题的能力。数学试卷符合考试大纲和课程标准的各项要求,重视数学基础,注重能力立意,体现课改理念,富有时代特征。试题稳中有新,坚持多角度、多层次地考查考生的逻辑思维、运算求解、空间想象以及数据处理等能力,突出对逻辑推理、创新应用意识与中国优秀传统文化的考查,体现了数学的基础性和工具性作用。

 特点一:创新试题设计,深入考查逻辑推理能力

 数学所考查的逻辑思维、推理方法和分析能力体现了数学作为基础学科的作用,这些在个人的发展过程和认知结构的建构过程中都是必不可少的。通过加强对逻辑推理能力的考查,可以促使学生学习理性思维的方法,养成实事求是、求真务实的思想意识,使他们在今后的生活和工作中形成科学的人生态度。

 试卷充分利用学科特点,创新试题设计,深入考查逻辑推理能力。采取的主要措施有:一是设问方式创新,例如全国二卷第19题要求考生画出交线围成的正方形,不必说明画法和理由,鼓励考生动手试验,进行创新尝试;二是试题的解决方案创新,例如全国一卷理科第16题引导考生将解三角形的原理推广运用到四边形中,要求考生打破常规思路,独立思考,积极探究;三是试题素材创新,例如北京卷文科第14题突出对图形、图表语言运用的考查,需要考生从题设图表中获取并处理相关信息进行逻辑推理。试题不落俗套,考查了考生逻辑思维的系统性。四是试题情境创新,例如浙江卷文科第7题将立体几何与平面几何知识有机结合,考查考生空间想象能力和推理论证能力,对考生逻辑思维的灵活性有较高要求。

 特点二:突出实践能力考查,增强创新应用意识

 数学源于生活与实践,数学知识是解决实际问题的有力工具,数学也是培养理性思维的重要学科,对创新应用意识的形成和发展具有重要作用。

 试题重视现实生活中的热点问题,紧密结合社会实际和现实生活,考查考生运用数学工具和思想方法分析、解决问题的能力,体现了数学在解决实际问题中的重要作用和应用价值,体现了高考改革中加强实践性、应用性的要求。试卷中有很多涉及应用背景的试题,贴近考生实际,让考生深深感受到数学就在他们的身边。例如,全国一卷第19题,要求考生根据试题所给的散点图,自主选择回归方程类型,对企业投入产品的宣传费用进行预测。江苏卷第17题以山区修公路为背景,要求考生建立数学模型,适度创新,运用所学数学知识分析问题,完成山区公路设计。试题的设计使考生置身于问题情境之中,充分体现数学的应用价值,激发学生学习数学的兴趣,自觉形成创新应用意识,彰显数学的理性精神与人文情怀,进而影响学生的情感态度价值观。

 实践应用能力的培养是素质教育的根本要求,更是破除题海战术、死记硬背的有效措施,也有利于培养学生理论联系实际的思想方法和创新意识,形成良好的思维习惯。试题还突出了对实践能力的考查,要求考生动手实验,积极探索,运用所学数学知识技能和方法解决问题。例如四川卷第18题鼓励考生动手实验,在数学理性的指导下获得正确的实验结果。试题的设计有利于引导学生主动动手实验,积极思考问题。

 特点三:注重基础性考查,渗透数学传统文化

 数学各份试卷重视对数学基础的考查,试卷中考查基本概念、基本运算、基本思想方法的题目占到60%以上。同时试卷注重对高中所学内容的全面考查,在此基础上,试卷还强调对重点内容的重点考查,如在解答题中考查了函数、导数、三角函数、统计与概率、数列、立体几何、直线与圆锥曲线等中学数学重点内容。

 今年数学试卷的另一个亮点就是在基础试题中渗透中国数学文化。我国数学文化历史悠久,有许多不同于西方数学文化的鲜明特点:注重归纳、强调实用、讲究算法。中国古代数学名著《九章算术》、《数书九章》等在人类社会的发展中起着重要作用。试卷选取了体现中国古代优秀数学文化并与中学数学内容结合紧密的素材,编拟试题,要求考生运用所学的基础知识、基本思想方法去解决问题。例如全国二卷第8题的设计思路来源于《九章算术》中的“更相减损术”,湖北卷第2题选自《数书九章》中的“米谷粒分”问题。这些试题的设计让考生感受到我国古代数学的优秀传统——数学要关注生产、生活等社会问题,从而引导考生通过了解数学文化,体会数学知识方法在认识现实世界中的重要作用。在高考试题中渗透中国古代数学文化,强调中国古代数学文化的传统特色,使考生在考查过程中,潜移默化地接受我国古代数学文化的熏陶,自觉形成严谨、务实的治学态度,传承中华优秀传统文化,弘扬爱国主义精神。

 数学试卷体现了课程标准理念,能够准确区分考生,有利于科学选拔人才,有利于学生全面发展,有利于促进社会公平。试题科学规范、设计新颖,情境设置合理,引导中学数学教学重视知识的生成、发展、迁移、归纳、拓展以及文化的传承。

;

湖南高考数学试卷试题及答案解析数学

文科偏难,理科会有一批高分生

师大附中高三文/理科数学备课组

组长:黄祖军朱修龙

与往年相比,降低了计算量,更注重对数学能力的考查,文科难度加大,理科相对有所降低,可能会出现一批高分段考生。

文科数学:题型有改变,以往3选2的选做题,由全部是填空题改成了全部是大题,这是许多考生反映难的主要原因。在考试范围、题型等方面,较去年基本没有变化,但注重在知识的交汇点设计试题。总的来讲,在难度控制方面,较往年略有偏高,但无偏题、怪题,无刻意追求技巧解法,着重考查通解通法。

理科数学:难度和往年差不多。试卷结构、题型、数量稳定,题目表述亲切、简明,三大题型前几道立足基础考查,对稳定考生的答题心态起到很好的作用。很多题目解法灵活、多样,给学生较大的发挥空间,比较适合基础扎实的中等学生答卷,尖子生应该能发挥出应有的水平

;